Performance Improved PSO based Modified Counter Propagation Neural Network for Abnormal MR Brain Image Classification
نویسندگان
چکیده
Abnormal Magnetic Resonance (MR) brain image classification is a mandatory but challenging task in the medical field. Accurate identification of the nature of the disease is highly essential for the successful treatment planning. Automated systems are highly preferred for image classification because of its high accuracy. Artificial neural networks are one of the widely used automated techniques. Though they yield high accuracy, most of the neural networks are computationally heavy due to their iterative nature. Low speed neural classifiers are least preferred since they are practically nonfeasible. Hence, there is a significant requirement for a neural classifier which is computationally efficient and highly accurate. To satisfy these criterions, a modified Counter Propagation Neural Network (CPN) is proposed in this work which proves to be much faster than the conventional network. For further enhancement of the performance of the classifier, Particle Swarm Optimization (PSO) technique is used in conjunction with the modified CPN. Experiments are conducted on these classifiers using real-time abnormal images collected from the scan centres. These three types of classifiers are analyzed in terms of classification accuracy and convergence time period. Experimental results show promising results for the PSO based modified CPN classifier in terms of the performance measures. D.Jude Hemanth et al. 66
منابع مشابه
Performance Evaluation of Hybrid Supervised and Unsupervised Neural Model for Abnormal Tumor Classification in Brain MR Images
Supervised and unsupervised artificial neural networks have been successfully used for image classification in biomedical applications. Supervised neural networks yield accurate classification results though the computational speed is low. On the contrary, unsupervised neural networks are comparatively faster than supervised networks besides yielding inferior classification accuracy. In this pa...
متن کاملAn Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network
Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image arti...
متن کاملNeural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten
Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...
متن کاملESTIMATION OF INVERSE DYNAMIC BEHAVIOR OF MR DAMPERS USING ARTIFICIAL AND FUZZY-BASED NEURAL NETWORKS
In this paper the performance of Artificial Neural Networks (ANNs) and Adaptive Neuro- Fuzzy Inference Systems (ANFIS) in simulating the inverse dynamic behavior of Magneto- Rheological (MR) dampers is investigated. MR dampers are one of the most applicable methods in semi active control of seismic response of structures. Various mathematical models are introduced to simulate the dynamic behavi...
متن کاملآموزش شبکه عصبی MLP در فشردهسازی تصاویر با استفاده از روش GSA
Image compression is one of the important research fields in image processing. Up to now, different methods are presented for image compression. Neural network is one of these methods that has represented its good performance in many applications. The usual method in training of neural networks is error back propagation method that its drawbacks are late convergence and stopping in points of lo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010